Mobile-LPR 是一个面向移动端的准商业级车牌识别库,以NCNN作为推理后端,使用DNN作为算法核心,支持多种车牌检测算法,支持车牌识别和车牌颜色识别。
特点
超轻量,核心库只依赖NCNN,并且对模型量化进行支持多检测,支持SSD,MTCNN,LFFD等目标检测算法精度高,LFFD目标检测在CCPD检测AP达到98.9,车牌识别达到99.95%, 综合识别率超过99%易使用,只需要10行代码即可完成车牌识别易扩展,可快速扩展各类检测算法
算法流程
构建及安装
下载源码gitclonehttps://github.com/xiangweizeng/mobile-lpr.git准备环境安装opencv4.0及以上, freetype库安装cmake3.0以上版本,支持c++11的c++编译器,如gcc-6.3编译安装mkdirbuildcdbuildcmake..makeinstall
使用及样例
1.使用MTCNN检测
代码样例void test_mtcnn_plate(){
pr::fix_mtcnn_detector("../../models/float", pr::mtcnn_float_detector);
pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::mtcnn_float_detector);
pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);
pr::LPRRecognizer lpr = pr::float_lpr_recognizer.create_recognizer();
Mat img = imread("../../image/plate.png");
ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);
std::vector objects;
detector->plate_detect(sample, objects);
lpr->decode_plate_infos(objects);for(auto pi : objects)
{
cout <<"plate_no: "<< pi.plate_color << pi.plate_no <<" box:"<< pi.bbox.xmin <<","<< pi.bbox.ymin <<","<< pi.bbox.xmax <<","<< pi.bbox.ymax <<","<< pi.bbox.score << endl;
}
}效果示例:
2.使用LFFD检测
代码样例void test_lffd_plate()
{
pr::fix_lffd_detector("../../models/float", pr::lffd_float_detector);
pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::lffd_float_detector);
pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);
pr::LPRRecognizer lpr = pr::float_lpr_recognizer.create_recognizer();
Mat img = imread("../../image/plate.png");
ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);
std::vector objects;
detector->plate_detect(sample, objects);
lpr->decode_plate_infos(objects);for(auto pi : objects)
{
cout <<"plate_no: "<< pi.plate_color << pi.plate_no <<" box:"<< pi.bbox.xmin <<","<< pi.bbox.ymin <<","<< pi.bbox.xmax <<","<< pi.bbox.ymax <<","<< pi.bbox.score << endl;
}
}效果示例:
3.使用SSD检测
代码样例void test_ssd_plate()
{
pr::fix_ssd_detector("../../models/float", pr::ssd_float_detector);
pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::ssd_float_detector);
pr::fix_lpr_recognizer("../../models/float", pr::float_lpr_recognizer);
pr::LPRRecognizer lpr = pr::float_lpr_recognizer.create_recognizer();
Mat img = imread("../../image/manys.jpeg");
ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);
std::vector objects;
detector->plate_detect(sample, objects);
lpr->decode_plate_infos(objects);for(auto pi : objects)
{
cout <<"plate_no: "<< pi.plate_color << pi.plate_no <<" box:"<< pi.bbox.xmin <<","<< pi.bbox.ymin <<","<< pi.bbox.xmax <<","<< pi.bbox.ymax <<","<< pi.bbox.score << endl;
}
}效果示例:
4.使用量化模型
代码样例void test_quantize_mtcnn_plate(){
pr::fix_mtcnn_detector("../../models/quantize", pr::mtcnn_int8_detector);
pr::PlateDetector detector = pr::IPlateDetector::create_plate_detector(pr::mtcnn_int8_detector);
pr::fix_lpr_recognizer("../../models/quantize", pr::int8_lpr_recognizer);
pr::LPRRecognizer lpr = pr::int8_lpr_recognizer.create_recognizer();
Mat img = imread("../../image/plate.png");
ncnn::Mat sample = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR, img.cols, img.rows);
std::vector objects;
detector->plate_detect(sample, objects);
lpr->decode_plate_infos(objects);for(auto pi : objects)
{
cout <<"plate_no: "<< pi.plate_color << pi.plate_no <<" box:"<< pi.bbox.xmin <<","<< pi.bbox.ymin <<","<< pi.bbox.xmax <<","<< pi.bbox.ymax <<","<< pi.bbox.score << endl;
}
}效果示例:
后续工作
添加更优的算法支持优化模型,支持更多的车牌类型,目前支持普通车牌识别,欢迎各位大神提供更好的模型优化模型,更高的精度添加Android 使用实例性能评估
特别声明:文章来源用户上传并发布,本站只提供信息存储服务,不拥有所有权,内容仅供参考。